Dysfunctional mitochondria trap proteins in the intermembrane space, 2025, Tamara Flohr et al

Mij

Senior Member (Voting Rights)

Abstract

The accumulation of mitochondrial precursor proteins in the cytosol due to mitochondrial dysfunction compromises cellular proteostasis and is a hallmark of diseases. Why non-imported precursors are toxic and how eukaryotic cells prevent their accumulation in the cytosol is still poorly understood.

Using a proximity labeling-based assay to globally monitor the intramitochondrial location of proteins, we show that, upon mitochondrial dysfunction, many mitochondrial matrix proteins are sequestered in the intermembrane space (IMS); something we refer to as “mitochondrial triage of precursor proteins” (MitoTraP). MitoTraP is not simply the result of a general translocation block at the level of the inner membrane, but specifically directs a subgroup of matrix proteins into the IMS, many of which are constituents of the mitochondrial ribosome.

Using the mitoribosomal protein Mrp17 (bS6m) as a model, we found that IMS sequestration prevents its mistargeting to the nucleus, potentially averting interference with assembly of cytosolic ribosomes. Thus, MitoTraP represents a novel, so far unknown mechanism of the eukaryotic quality control system that protects the cellular proteome against the toxic effects of non-imported mitochondrial precursor proteins.
LINK
 
Poorly energized mitochondria trap a subpopulation of mitochondrial precursor proteins in the intermembrane space. This article introduces ‘mitochondrial triage of precursor proteins’ (MitoTraP) as a mechanism that prevents the mistargeting of non-imported proteins to the nucleus and reduces proteotoxic effects.

Dysfunctional mitochondria can trap import intermediates in the intermembrane space (IMS).

Mitoribosomal proteins are enriched among the IMS-trapped proteins.

The trapping does not require ATP and the mitochondrial import motor.

Trapping of mitochondrial ribosomal proteins prevents their mistargeting to the nucleus.
 
Back
Top Bottom