Exercise therapy for chronic low back pain (Cochrane review), 2021, Hayden et al.

Discussion in 'Other health news and research' started by ME/CFS Skeptic, Aug 7, 2024.

  1. ME/CFS Skeptic

    ME/CFS Skeptic Senior Member (Voting Rights)

    Messages:
    4,083
    Location:
    Belgium
    Abstract
    Background: Low back pain has been the leading cause of disability globally for at least the past three decades and results in enormous direct healthcare and lost productivity costs.

    Objectives: The primary objective of this systematic review is to assess the impact of exercise treatment on pain and functional limitations in adults with chronic non-specific low back pain compared to no treatment, usual care, placebo and other conservative treatments.

    Search methods: We searched CENTRAL (which includes the Cochrane Back and Neck trials register), MEDLINE, Embase, CINAHL, PsycINFO, PEDro, SPORTDiscus, and trials registries (ClinicalTrials.gov and World Health Organization International Clinical Trials Registry Platform), and conducted citation searching of relevant systematic reviews to identify additional studies. The review includes data for trials identified in searches up to 27 April 2018. All eligible trials have been identified through searches to 7 December 2020, but have not yet been extracted; these trials will be integrated in the next update.

    Selection criteria: We included randomised controlled trials that assessed exercise treatment compared to no treatment, usual care, placebo or other conservative treatment on the outcomes of pain or functional limitations for a population of adult participants with chronic non-specific low back pain of more than 12 weeks' duration.

    Data collection and analysis: Two authors screened and assessed studies independently, with consensus. We extracted outcome data using electronic databases; pain and functional limitations outcomes were re-scaled to 0 to 100 points for meta-analyses where 0 is no pain or functional limitations. We assessed risk of bias using the Cochrane risk of bias (RoB) tool and used GRADE to evaluate the overall certainty of the evidence. When required, we contacted study authors to obtain missing data. To interpret meta-analysis results, we considered a 15-point difference in pain and a 10-point difference in functional limitations outcomes to be clinically important for the primary comparison of exercise versus no treatment, usual care or placebo.

    Main results: We included 249 trials of exercise treatment, including studies conducted in Europe (122 studies), Asia (38 studies), North America (33 studies), and the Middle East (24 studies). Sixty-one per cent of studies (151 trials) examined the effectiveness of two or more different types of exercise treatment, and 57% (142 trials) compared exercise treatment to a non-exercise comparison treatment. Study participants had a mean age of 43.7 years and, on average, 59% of study populations were female. Most of the trials were judged to be at risk of bias, including 79% at risk of performance bias due to difficulty blinding exercise treatments. We found moderate-certainty evidence that exercise treatment is more effective for treatment of chronic low back pain compared to no treatment, usual care or placebo comparisons for pain outcomes at earliest follow-up (MD -15.2, 95% CI -18.3 to -12.2), a clinically important difference. Certainty of evidence was downgraded mainly due to heterogeneity. For the same comparison, there was moderate-certainty evidence for functional limitations outcomes (MD -6.8 (95% CI -8.3 to -5.3); this finding did not meet our prespecified threshold for minimal clinically important difference. Certainty of evidence was downgraded mainly due to some evidence of publication bias. Compared to all other investigated conservative treatments, exercise treatment was found to have improved pain (MD -9.1, 95% CI -12.6 to -5.6) and functional limitations outcomes (MD -4.1, 95% CI -6.0 to -2.2). These effects did not meet our prespecified threshold for clinically important difference. Subgroup analysis of pain outcomes suggested that exercise treatment is probably more effective than education alone (MD -12.2, 95% CI -19.4 to -5.0) or non-exercise physical therapy (MD -10.4, 95% CI -15.2 to -5.6), but with no differences observed for manual therapy (MD 1.0, 95% CI -3.1 to 5.1). In studies that reported adverse effects (86 studies), one or more adverse effects were reported in 37 of 112 exercise groups (33%) and 12 of 42 comparison groups (29%). Twelve included studies reported measuring adverse effects in a systematic way, with a median of 0.14 (IQR 0.01 to 0.57) per participant in the exercise groups (mostly minor harms, e.g. muscle soreness), and 0.12 (IQR 0.02 to 0.32) in comparison groups.

    Authors' conclusions: We found moderate-certainty evidence that exercise is probably effective for treatment of chronic low back pain compared to no treatment, usual care or placebo for pain. The observed treatment effect for the exercise compared to no treatment, usual care or placebo comparisons is small for functional limitations, not meeting our threshold for minimal clinically important difference. We also found exercise to have improved pain (low-certainty evidence) and functional limitations outcomes (moderate-certainty evidence) compared to other conservative treatments; however, these effects were small and not clinically important when considering all comparisons together. Subgroup analysis suggested that exercise treatment is probably more effective than advice or education alone, or electrotherapy, but with no differences observed for manual therapy treatments.
     
    Missense, oldtimer and Turtle like this.
  2. ME/CFS Skeptic

    ME/CFS Skeptic Senior Member (Voting Rights)

    Messages:
    4,083
    Location:
    Belgium
    Pain measured on a visual analogue scale going from 0 to 100. The main effect MD-15.2, 95% CI-18.3 to -12.2 close to the minimal clinically important difference of 15 points. The effect for functional limitations (MD -6.8 (95% CI -8.3 to -5.3)) was lower than the minimal clinically important difference of 10 points.

    So no convincing effect and all subjective outcomes in non-blinded trials.

    But the mean reason for posting this Cochrane review is that it included 249 trials! The authors couldn't keep up with all the publications so there were 172 more recent studies that they couldn't include. They argued that researchers should stop doing these kind of trials:
    421 trials on exercise therapy for low back pain! I think this is a good indication of the poor state of medical research. Obviously this has nothing to do with doing science.
     
  3. Jonathan Edwards

    Jonathan Edwards Senior Member (Voting Rights)

    Messages:
    15,398
    Location:
    London, UK
    And of course 'exercise therapy' is no more use as a prescription than 'pill therapy'. It could be anything, good, bad or worse.

    I hear fricative noises at the bottom of a beer container.
     
  4. rvallee

    rvallee Senior Member (Voting Rights)

    Messages:
    13,843
    Location:
    Canada
    Still amazing that they conclude that
    even though
    I also don't know why they called those controlled when that's not possible. They are randomized trials, and those are pretty much worthless.

    This industry is a wreck. They're doing quantitative analyses on arbitrary qualitative ratings, each with their own individual metric. Or to borrow the parlance of AI, because it applies very well here, each with their own individual weights and biases.

    I wonder how many more trials there have been since. I bet it's a lot. Funders seem to have unlimited tolerance for failure. The idea of doing trials for the sake of doing trials was always ridiculous. It's like paying people to build things during the day, then pay more people to destroy them at night, as a jobs program. Except worse. Way worse.
     

Share This Page