Mitochondrial respiratory chain function promotes extracellular matrix integrity in cartilage, 2021, Bubb et al

Discussion in 'Other health news and research' started by Andy, Sep 25, 2021.

  1. Andy

    Andy Committee Member

    Messages:
    22,611
    Location:
    Hampshire, UK
    In mice.

    Abstract

    Energy metabolism and extracellular matrix function together orchestrate and maintain tissue organization, but crosstalk between these processes is poorly understood. Here, we used single cell RNA-seq (scRNA-seq) analysis to uncover the importance of the mitochondrial respiratory chain for extracellular matrix homeostasis in mature cartilage. This tissue produces large amounts of a specialized extracellular matrix to promote skeletal growth during development and maintain mobility throughout life. A combined approach of high-resolution scRNA-seq, mass spectrometry/matrisome analysis, and atomic force microscopy was applied to mutant mice with cartilage-specific inactivation of respiratory chain function. This genetic inhibition in cartilage results in the expansion of a central area of 1-month-old mouse femur head cartilage, showing disorganized chondrocytes and increased deposition of extracellular matrix material. scRNA-seq analysis identified a cell cluster-specific decrease in mitochondrial DNA-encoded respiratory chain genes and a unique regulation of extracellular matrix-related genes in nonarticular chondrocytes. These changes were associated with alterations in extracellular matrix composition, a shift in collagen/non-collagen protein content, and an increase of collagen crosslinking and ECM stiffness. These results demonstrate that mitochondrial respiratory chain dysfunction is a key factor that can promote ECM integrity and mechanostability in cartilage and presumably also in many other tissues.

    Open access, https://www.jbc.org/article/S0021-9258(21)01027-9/fulltext
     

Share This Page