1. Sign our petition calling on Cochrane to withdraw their review of Exercise Therapy for CFS here.
    Dismiss Notice
  2. Guest, the 'News in Brief' for the week beginning 8th April 2024 is here.
    Dismiss Notice
  3. Welcome! To read the Core Purpose and Values of our forum, click here.
    Dismiss Notice

A quantified comparison of cortical atlases on the basis of trait morphometricity, 2022, Fürtjes et al

Discussion in 'Research methodology news and research' started by CRG, Dec 9, 2022.

  1. CRG

    CRG Senior Member (Voting Rights)

    Messages:
    1,857
    Location:
    UK
    A quantified comparison of cortical atlases on the basis of trait morphometricity

    Anna E. Fürtjes, James H. Cole, Baptiste Couvy-Duchesne, Stuart J. Ritchie

    Abstract

    Background

    Many different brain atlases exist that subdivide the human cortex into dozens or hundreds of regions-of-interest (ROIs). Inconsistency across studies using one or another cortical atlas may contribute to the replication crisis across the neurosciences.

    Methods


    Here, we provide a quantitative comparison between seven popular cortical atlases (Yeo, Desikan-Killiany, Destrieux, Jülich-Brain, Gordon, Glasser, Schaefer) and vertex-wise measures (thickness, surface area, and volume), to determine which parcellation retains the most information in the analysis of behavioural traits (incl. age, sex, body mass index, and cognitive ability) in the UK Biobank sample (N∼40,000). We use linear mixed models to compare whole-brain morphometricity; the proportion of trait variance accounted for when using a given atlas.

    Results

    Commonly-used atlases resulted in a considerable loss of information compared to vertex-wise representations of cortical structure. Morphometricity increased linearly as a function of the log-number of ROIs included in an atlas, indicating atlas-based analyses miss many true associations and yield limited prediction accuracy. Likelihood ratio tests revealed that low-dimensional atlases accounted for unique trait variance rather than variance common between atlases, suggesting that previous studies likely returned atlas-specific findings. Finally, we found that the commonly-used atlases yielded brain-behaviour associations on par with those obtained with random parcellations, where specific region boundaries were randomly generated.

    Discussion


    Our findings motivate future structural neuroimaging studies to favour vertex-wise cortical representations over coarser atlases, or to consider repeating analyses across multiple atlases, should the use of low-dimensional atlases be necessary. The insights uncovered here imply that cortical atlas choices likely contribute to the lack of reproducibility in ROI-based studies.
     
    Sean and Peter Trewhitt like this.

Share This Page