Distinct functional connectivity patterns in myalgic encephalomyelitis and long COVID patients during cognitive fatigue: a 7 Tesla task-fMRI study
BACKGROUND
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and long COVID are chronic debilitating illnesses featuring fatigue, post-exertional malaise (PEM) and neurocognitive deficits. Temporal correlation of neural activity between distinct brain regions, also referred to as functional connectivity (FC), can provide insights into how brain networks coordinate, at rest or during task. Therefore, we explored intrinsic FC correlates of cognitive fatigue in ME/CFS and long COVID patients during two Stroop-colour-word paradigms on 7 Tesla fMRI.
METHODS
450 sagittal volumes were acquired from seventy-eight participants: 32 patients with MECFS (pwME/CFS); 19 long COVID (pwLC) and 27 healthy controls (HC) during performance of baseline or Pre (before/during fatigue build-up) and repeat Post (fatigue set-in) Stroop tasks. Structural and functional data were analysed using the CONN toolbox.
RESULTS
Regions of interest (ROI-to-ROI) analysis revealed significantly increased FC in subcortical regions in HC for Pre vs Post. Relative to HC, pwLC showed significantly reduced FC between nucleus accumbens and vermis 3 (p = 0.02) in Pre and increased FC in the prefrontal cortex and hippocampus (p = 0.02) in Post. pwME/CFS showed a significantly increased FC between the left cuneiform nucleus and right medulla (p = 0.03). Compared to HC, reduced FC was significant in pwLC during Pre, and between medulla and hippocampus (p = 0.04) and between nucleus accumbens and vermis (p = 0.001) during Post. Aberrant FC was significant for pwME/CFS in core networks during Pre. Core network FC to the cerebellum, amygdala, caudate and red nucleus correlated with symptom scores for cognition in both pwME/CFS and pwLC. Hippocampus and cerebellar FC correlated with duration of illness in pwME/CFS.
CONCLUSIONS
Our findings of reduced dopaminergic hippocampal-nucleus-accumbens connectivity imply blunted motivation and cognition. Extensive FC differences in subcortical and core networks in patient cohorts were detected relative to an increased FC in HC. High regional communication indicative of greater task engagement by HC was distinctive while FC differences in ME/CFS and long COVID patients indicated reduced and dysregulated regional coordination that may serve as candidate biomarkers of symptomatology in long COVID and ME/CFS.
Web | DOI | PDF | Journal of Translational Medicine | Open Access
Inderyas, Maira; Thapaliya, Kiran; Marshall-Gradisnik, Sonya; Barnden, Leighton
BACKGROUND
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and long COVID are chronic debilitating illnesses featuring fatigue, post-exertional malaise (PEM) and neurocognitive deficits. Temporal correlation of neural activity between distinct brain regions, also referred to as functional connectivity (FC), can provide insights into how brain networks coordinate, at rest or during task. Therefore, we explored intrinsic FC correlates of cognitive fatigue in ME/CFS and long COVID patients during two Stroop-colour-word paradigms on 7 Tesla fMRI.
METHODS
450 sagittal volumes were acquired from seventy-eight participants: 32 patients with MECFS (pwME/CFS); 19 long COVID (pwLC) and 27 healthy controls (HC) during performance of baseline or Pre (before/during fatigue build-up) and repeat Post (fatigue set-in) Stroop tasks. Structural and functional data were analysed using the CONN toolbox.
RESULTS
Regions of interest (ROI-to-ROI) analysis revealed significantly increased FC in subcortical regions in HC for Pre vs Post. Relative to HC, pwLC showed significantly reduced FC between nucleus accumbens and vermis 3 (p = 0.02) in Pre and increased FC in the prefrontal cortex and hippocampus (p = 0.02) in Post. pwME/CFS showed a significantly increased FC between the left cuneiform nucleus and right medulla (p = 0.03). Compared to HC, reduced FC was significant in pwLC during Pre, and between medulla and hippocampus (p = 0.04) and between nucleus accumbens and vermis (p = 0.001) during Post. Aberrant FC was significant for pwME/CFS in core networks during Pre. Core network FC to the cerebellum, amygdala, caudate and red nucleus correlated with symptom scores for cognition in both pwME/CFS and pwLC. Hippocampus and cerebellar FC correlated with duration of illness in pwME/CFS.
CONCLUSIONS
Our findings of reduced dopaminergic hippocampal-nucleus-accumbens connectivity imply blunted motivation and cognition. Extensive FC differences in subcortical and core networks in patient cohorts were detected relative to an increased FC in HC. High regional communication indicative of greater task engagement by HC was distinctive while FC differences in ME/CFS and long COVID patients indicated reduced and dysregulated regional coordination that may serve as candidate biomarkers of symptomatology in long COVID and ME/CFS.
Web | DOI | PDF | Journal of Translational Medicine | Open Access