Dolphin
Senior Member (Voting Rights)
https://www.atsjournals.org/doi/abs/10.1164/ajrccm.2025.211.Abstracts.A7881
Exercise Pathophysiology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID: Commonalities Detected by Invasive Cardiopulmonary Exercise Testing
J. Squires 1, S. Palwayi 1, P. Li 3, W. Xiao 3, K. LeWine 1, S.W. Johnson 1, D. Felsenstein 2, A.B. Waxman 1, D.M. Systrom 1,
Abstract
Abstract
Rationale
There is substantial overlap of exertional symptoms in Long COVID (LC) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) including intractable fatigue, post-exertional malaise (PEM), and orthostatic intolerance, but very little objective data liking the two. This study compares exercise pathophysiology in the two disorders and normal controls using invasive cardiopulmonary exercise testing (iCPET).
Methods
Between January 2019 and December 2024, 1,518 patients underwent a clinical iCPET at Brigham and Women's Hospital. Exclusion criteria included morbid obesity (BMI>40 kg/m2), severe anemia ([Hb]<9.0 g/dL), elite athletes (peak VO2 (pVO2)>120% predicted), sub-maximum effort (RER<1.05), a primary pulmonary mechanical limit (VE @ AT/MVV>0.7), and comorbidities such as active/treated cancer, interstitial lung disease, or other respiratory related diseases. iCPET results from 438 ME/CFS patients, 73 LC patients, and 43 symptomatic but otherwise normal controls were analyzed. pV02, peak cardiac output (pQc), peak right atrial pressure (pRAP), peak systemic oxygen extraction (pSOE; Ca-vO2/[Hb]), and ventilatory inefficiency (VE/VCO2 slope) were compared among groups. Statistical significance was determined using Kruskal-Wallis tests for global comparisons, with post-hoc Dunn tests for pairwise group comparisons. Holm-Bonferroni adjustments were applied to control for multiple comparisons.
Results
LC and ME/CFS displayed reduced pVO2 % predicted compared to controls (LC: 78.4 ± 18%, ME/CFS: 78.1 ± 17%, Controls: 97.5 ± 10%, P≤0.0001). Reduced pQc % predicted was also observed compared to controls (LC: 91.1 ± 18%, ME/CFS: 96.3%, Controls: 101 ± 11%, P≤0.001). pRAP were significantly less compared to controls (LC: 1.1 ± 3.1 mmHg, ME/CFS: 1.3 ± 2.8 mmHg, Controls: 3.6 ± 3.4 mmHg, P≤0.001). Significant reductions in pSOE were seen for LC and ME/CFS (LC: 0.81 ± 0.1, ME/CFS: 0.81 ± 0.1, Controls, 0.91 ± 0.1, P≤0.0001). The only measure with no significant difference between disease and control was VE/VCO2 slope (LC: 31.4 ± 8.4, ME/CFS: 31.6 ± 6.9, Controls: 32.0 ± 6.7, P≥0.261). Most interestingly, no significant differences were seen between the two diseases for any of the analyzed measures (P≥0.245).
Conclusions
We report the largest cohort of ME/CFS and LC investigated with iCPET to date. ME/CFS and LC share symptomatic, reduced aerobic capacity at peak exercise, which is driven by preload insufficiency and impaired systemic O2 extraction, the latter compatible with peripheral left-to-right shunting and/or limb skeletal muscle dysfunction. These findings should drive future diagnostics and personalized medicine in both diseases. We hope these data inform the pending prospective NIH RECOVER iCPET study of LC.
Note this is from American Journal of Respiratory and Critical Care Medicine Volume 211, Issue Abstracts: American Thoracic Society International Conference Meetings Abstracts i.e. there is no accompanying fulltext
Exercise Pathophysiology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID: Commonalities Detected by Invasive Cardiopulmonary Exercise Testing
J. Squires 1, S. Palwayi 1, P. Li 3, W. Xiao 3, K. LeWine 1, S.W. Johnson 1, D. Felsenstein 2, A.B. Waxman 1, D.M. Systrom 1,
Abstract
Abstract
Rationale
There is substantial overlap of exertional symptoms in Long COVID (LC) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) including intractable fatigue, post-exertional malaise (PEM), and orthostatic intolerance, but very little objective data liking the two. This study compares exercise pathophysiology in the two disorders and normal controls using invasive cardiopulmonary exercise testing (iCPET).
Methods
Between January 2019 and December 2024, 1,518 patients underwent a clinical iCPET at Brigham and Women's Hospital. Exclusion criteria included morbid obesity (BMI>40 kg/m2), severe anemia ([Hb]<9.0 g/dL), elite athletes (peak VO2 (pVO2)>120% predicted), sub-maximum effort (RER<1.05), a primary pulmonary mechanical limit (VE @ AT/MVV>0.7), and comorbidities such as active/treated cancer, interstitial lung disease, or other respiratory related diseases. iCPET results from 438 ME/CFS patients, 73 LC patients, and 43 symptomatic but otherwise normal controls were analyzed. pV02, peak cardiac output (pQc), peak right atrial pressure (pRAP), peak systemic oxygen extraction (pSOE; Ca-vO2/[Hb]), and ventilatory inefficiency (VE/VCO2 slope) were compared among groups. Statistical significance was determined using Kruskal-Wallis tests for global comparisons, with post-hoc Dunn tests for pairwise group comparisons. Holm-Bonferroni adjustments were applied to control for multiple comparisons.
Results
LC and ME/CFS displayed reduced pVO2 % predicted compared to controls (LC: 78.4 ± 18%, ME/CFS: 78.1 ± 17%, Controls: 97.5 ± 10%, P≤0.0001). Reduced pQc % predicted was also observed compared to controls (LC: 91.1 ± 18%, ME/CFS: 96.3%, Controls: 101 ± 11%, P≤0.001). pRAP were significantly less compared to controls (LC: 1.1 ± 3.1 mmHg, ME/CFS: 1.3 ± 2.8 mmHg, Controls: 3.6 ± 3.4 mmHg, P≤0.001). Significant reductions in pSOE were seen for LC and ME/CFS (LC: 0.81 ± 0.1, ME/CFS: 0.81 ± 0.1, Controls, 0.91 ± 0.1, P≤0.0001). The only measure with no significant difference between disease and control was VE/VCO2 slope (LC: 31.4 ± 8.4, ME/CFS: 31.6 ± 6.9, Controls: 32.0 ± 6.7, P≥0.261). Most interestingly, no significant differences were seen between the two diseases for any of the analyzed measures (P≥0.245).
Conclusions
We report the largest cohort of ME/CFS and LC investigated with iCPET to date. ME/CFS and LC share symptomatic, reduced aerobic capacity at peak exercise, which is driven by preload insufficiency and impaired systemic O2 extraction, the latter compatible with peripheral left-to-right shunting and/or limb skeletal muscle dysfunction. These findings should drive future diagnostics and personalized medicine in both diseases. We hope these data inform the pending prospective NIH RECOVER iCPET study of LC.
Note this is from American Journal of Respiratory and Critical Care Medicine Volume 211, Issue Abstracts: American Thoracic Society International Conference Meetings Abstracts i.e. there is no accompanying fulltext
Last edited: