Andy
Senior Member (Voting rights)
Full title: The Gut–Brain–Immune Axis in Environmental Sensitivity Illnesses: Microbiome-Centered Narrative Review of Fibromyalgia Syndrome, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, and Multiple Chemical Sensitivity
A unifying hypothesis highlights the gut–brain–immune axis, where alterations in the intestinal microbiome, epithelial barrier dysfunction, and aberrant immune signaling interact with central sensitization and systemic metabolic dysregulation. Recent studies demonstrate reduced microbial diversity, depletion of anti-inflammatory taxa (e.g., Faecalibacterium prausnitzii, Bifidobacterium), and enrichment of pro-inflammatory Clostridium species across these conditions. These shifts likely alter production of short-chain fatty acids, amino acid metabolites, and complex lipids, with downstream effects on mitochondrial function, neuroinflammation, and host energy metabolism. Moreover, emerging clinical interventions—including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation—suggest a potential role for microbiome-targeted therapies, though controlled evidence remains limited.
This review synthesizes current knowledge on microbiome alterations in FMS, ME/CFS, and MCS, emphasizing their convergence on metabolic and immune pathways. By integrating microbial, immunological, and neurophysiological perspectives, we propose a microbiome-centered framework for understanding environmental sensitivity illnesses and highlight avenues for translational research and therapeutic innovation.
Open access
Abstract
Environmental sensitivity illnesses—including fibromyalgia syndrome (FMS), myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and multiple chemical sensitivity (MCS)—are chronic, disabling disorders characterized by hypersensitivity to environmental stimuli, persistent fatigue, widespread pain, and neurocognitive and autonomic dysfunction. Although their diagnostic criteria differ, increasing evidence suggests overlapping clinical features and shared biological mechanisms.A unifying hypothesis highlights the gut–brain–immune axis, where alterations in the intestinal microbiome, epithelial barrier dysfunction, and aberrant immune signaling interact with central sensitization and systemic metabolic dysregulation. Recent studies demonstrate reduced microbial diversity, depletion of anti-inflammatory taxa (e.g., Faecalibacterium prausnitzii, Bifidobacterium), and enrichment of pro-inflammatory Clostridium species across these conditions. These shifts likely alter production of short-chain fatty acids, amino acid metabolites, and complex lipids, with downstream effects on mitochondrial function, neuroinflammation, and host energy metabolism. Moreover, emerging clinical interventions—including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation—suggest a potential role for microbiome-targeted therapies, though controlled evidence remains limited.
This review synthesizes current knowledge on microbiome alterations in FMS, ME/CFS, and MCS, emphasizing their convergence on metabolic and immune pathways. By integrating microbial, immunological, and neurophysiological perspectives, we propose a microbiome-centered framework for understanding environmental sensitivity illnesses and highlight avenues for translational research and therapeutic innovation.
Open access