What do you think needs to be tested in the blood (plasma, PBMCs, etc) of patients?

I'd love to see the theory that peroxisomes are dysfunctional (Che, Lipkin Bridges 2022) investigated by checking the plasmalogen content of erythrocyte membranes.

We have developed a test method for the simultaneous quantitation of C16:0, C18:0, and C018:1 plasmalogen (PG) species and their corresponding fatty acids (FAs) in dried blood spots (DBS) and erythrocytes (RBC) by using capillary gas chromatography-mass spectrometry.

https://pubmed.ncbi.nlm.nih.gov/37747296/

peroxisomes are the organelle that make plasmalogens and a shortfall of them can lead to stiff erythrocytes that don't deliver oxygen properly.
 
The other finding screaming out for replication is Hwang's WASF3 finding but could you even see it in blood? He used muscle biopsy samples. What you can measure in serum apparently are the Endoplasmic reticulum stress markers GRP78, PERK and CHOP which were also part of his finding (noting that he found a pattern of activation that suggested something had gone wrong with ER stress management).
 
https://epub.technikum-wien.at/obvftwhsm/content/titleinfo/10192639/full.pdf

MASTERʼS THESIS
Thesis submitted in fulfillment of the requirements for the degree of Master of Science in Engineering at the University of Applied Sciences Technikum Wien - Degree Program Tissue Engineering and Regenerative Medicine

Establishment of a primary dorsal root ganglion cell culture to screen for autoantibodies for patients with myalgic encephalomyelitis/chronic fatigue syndrome or Post COVID.

By: Johanna Wachutka, BSc Student Number: 2210692004
Supervisor 1: Mag. Dr. David Hercher Supervisor 2: Univ.Prof. Priv. Doz. Dr. med. Romana Höftberger, Co-supervisor: Dr.scient. med. Carmen Haider Vienna, 03.06.2024


Abstract

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Post Coronavirus disease (Post COVID) are complex, multi-systemic illnesses, sharing symptoms like chronic pain, neurological impairments, and fatigue.

The immune system might contribute to the pathology of these diseases.

Our study aimed at detecting potential autoantibodies in tissue-based assay (TBA) and in cell-based assay (CBA).

For TBA, indirect immunohistochemistry was performed on adult rat spinal cord using patients´ serum and/or cerebrospinal fluid (CSF). For CBA, dorsal root ganglia (DRG) from 12–14-day-old rats were isolated, cultured 1-2 days and incubated with patients´ serum and/or CSF to detect potential autoantibody-binding via fluorescence staining.

Our cohort encompassed 207 samples from 151 patients presenting symptoms of ME/CFS and/or Post COVID.

Among these patients, 56% were female and 44% male with a mean age of 44 years.

The main age groups were 30-39 and 40-49.

In TBA, we observed strong immunoreactivity in the lamina II of the dorsal horn in 68 serum and seven CSF samples.

Since weak immunoreactivity was also observed in negative control samples from patients without clinical neurological symptoms, we performed serial dilutions to determine a clinically relevant cut-off dilution.

We set 1:1600 as the relevant dilution, where negative controls showed no staining while symptomatic patients remained positive.

Since some of the axons of the DRG cells terminate in the lamina II of the dorsal horn, we investigated if similar staining patterns occurred in DRG.

First, successful cultivation of DRG cells expressing the neurofilaments SMI31 and SMI32 was confirmed using fluorescent antibodies, which target these neurofilaments.

Subsequent screening of patient serum and/or CSF on live DRG cells with intact cell membranes revealed positive staining in ten patients.

Positively labelled cells expressed neurofilaments, suggesting the detection of autoantibodies targeting extracellular neuronal antigens.

Out of the ten CBA-positive serum samples, titration in TBA revealed titres of 1:1600 or higher in nine samples.

These nine samples that were double-positive in TBA and CBA were classified as positive in our study.

No positive staining was detected in CSF samples.

In conclusion, we could identify nine patients that showed immunoreactivity in both TBA and CBA, which might indicate a role of autoantibodies targeting neuronal antigens of DRG cells.

Further analyses, including immunoprecipitation and mass spectrometry will be necessary to identify and characterize the target antigen.

The identification of the antigen will enable a targeted immunotherapy and facilitate the diagnosis of the diseases by using the autoantibody as a biomarker.




Kurzfassung

Myalgische Enzephalomyelitis/chronisches Fatigue Syndrom (ME/CFS) und die Post Coronavirus-Krankheit (Post COVID) sind komplexe, multisystemische Erkrankungen, die gemeinsame Symptome wie chronische Schmerzen, neurologische Beeinträchtigungen und Fatigue aufweisen. Es wird angenommen, dass das Immunsystem bei der Pathologie dieser Erkrankungen eine Rolle spielt. Ziel unserer Studie war es potenzielle Autoantikörper im gewebebasierten Assay (TBA) und im zellbasierten Assay (CBA) nachzuweisen. Im TBA wurde das Rückenmark erwachsener Ratten mit Serum und/oder Liquor inkubiert und immunhistochemisch gefärbt. Für den CBA wurden Spinalganglien von 12–14 Tage alten Ratten isoliert, 1–2 Tage kultiviert und dann mit PatientInnenmaterial inkubiert, um eine mögliche Autoantikörperbindung mittels Fluoreszenzfärbung nachzuweisen. Unsere Kohorte umfasste 207 Proben von 151 PatientInnen, welche Symptome von ME/CFS und/oder Post COVID aufwiesen. Unter diesen PatientInnen waren 56 % weiblich und 44 % männlich mit einem Durchschnittsalter von 44 Jahren. Die Hauptaltersgruppen waren 30-39 und 40-49. Im TBA wiesen 68 Serum- und sieben Liquorproben eine starke Immunreaktivität in der Lamina II des Hinterhorns auf. Da auch einzelne Negativkontrollen von PatientInnen ohne klinische neurologische Symptome eine leichte Immunreaktivität zeigten, führten wir serielle Verdünnungen durch, um eine klinisch relevante Detektionsgrenze festzulegen. Die Verdünnung 1:1600 wurde als klinisch relevant festgelegt, da in dieser negative Kontrollproben keine Färbung zeigten, während bei symptomatischen PatientInnen weiterhin eine positive Anfärbung sichtbar war. Da Axone von Dorsalganglien in der Lamina II des Hinterhorns enden, wurde untersucht, ob bei Dorsalganglien ähnliche Färbemuster auftraten. Zunächst wurde die erfolgreiche Kultivierung von Dorsalganglienzellen, welche die Neurofilamente SMI31 und SMI32 exprimieren, mithilfe fluoreszierender Antikörper bestätigt. Das anschließende Screening von PatientInnenmaterial auf lebenden Dorsalganglienzellen mit intakten Zellmembranen ergab bei zehn PatientInnen positive Ergebnisse im CBA. Die positiv markierten Zellen zeigten eine Expression von Neurofilamenten. Daraus lässt sich schließen, dass die Autoantikörper extrazelluläre neuronale Antigene erkennen. Von den zehn Serumproben, die im CBA positiv waren, ergab die Titration im TBA bei neun Proben einen Titer >= 1:1600. Jene neun Proben die sowohl im TBA als auch CBA positiv waren, wurden in unserer Studie als positiv klassifiziert. In Liquorproben wurde keine positive Färbung festgestellt. Zusammenfassend wurden somit bei neun PatientInnen sowohl im TBA als auch im CBA eine positive Immunreaktionen festgestellt, was auf eine mögliche Rolle von Autoantikörpern gegen neuronale Antigene der Dorsalganglien hinweisen könnte. Zur Identifizierung und Charakterisierung des Antigens sind weitere Analysen wie Immunpräzipitation und Massenspektrometrie erforderlich. Die Identifizierung des Antigens würde eine gezielte Immuntherapie ermöglichen und die Diagnose der Erkrankungen durch Verwendung der Autoantikörper als Biomarker erleichtern. Schlagwörter: Chronisches Fatigue Syndrom, Long COVID, Post COVID, Autoantikörper, Gewebebasierte Assays, Zellbasierte Assays

I stumbled across this earlier which looks interesting although it was serum and CSF.

Also there was that muscle on a chip abstract and the two mice studies suggesting something in the blood causes ME like symptoms in healthy animals and tissues. Perhaps that is worth further investigating somehow.

I also agree that WASF3 needs a replication attempt yesterday. I know it's not blood but I really hope the scientific community can get that organised.
 
re OP, imho one potential lead is the claim from nanoneedle experiments and other sources that healthy cells in ME plasma become ME like and MEcells in normal plasma become normal.

If this is replicable my suggestion would be to do fractionation experiments to discover the agents responsible.

You could use molecular seives and chromatographic techniques like southern blot for DNA, to create fractions of plasma to distinguish the causal molecule or molecules responsible for this change.

If it is not readily replicable we need to know whether that is a subtype issue or just a bad day at the laboratory kind of issue.
 
I seem to remember Lipkin and Morten metabolomic studies identified important unknown metabolites. I'm wondering if it's possible to replicate the detection of these metabolites/proteins using the tools you have at your disposal. Even if the item detected is unknown, replication in a separate study would provide justification for trying to decode what it is.
 
I’m hoping that this hasn’t already been done ( maybe by OMF? )

I wonder if using longitudinal/ regular finger prick sampling (through the day and over a few days ) to look at how personal biochemistry changes.

My understanding is that this type of sampling would quench any activity. So use tandem HPLC/MS to investigate differences.

Hopefully then housebound and bedbound patients can also be tested if they choose?

Didn’t they used to check PKU levels on newborn heel prick samples?
 
Back
Top Bottom