Transcriptional Control of Complement Activation in an Exercise Model of CFS, 2009, Sorensen et al

Hutan

Moderator
Staff member
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583111/

Abstract

Complement activation resulting in significant increases of C4a split product may be a marker of postexertional malaise in individuals with chronic fatigue syndrome (CFS). This study focused on identification of the transcriptional control that may contribute to the increased C4a in CFS subjects after exercise. We used quantitative reverse-transcription polymerase chain reaction to evaluate differential expression of genes in the classical and lectin pathways in peripheral blood mononuclear cells (PBMCs). Calibrated expression values were normalized to the internal reference gene peptidylpropyl isomerase B (PPIB), the external reference gene ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL), or the geometric mean (GM) of the genes ribosomal protein, large, P0 (RPLP0) and phosphoglycerate kinase 1(PGK1).

All nine genes tested, except mannose-binding lectin 2 (MBL2), were expressed in PBMCs. At 1 hour postexercise, C4, mannan-binding lectin serine protease 2 (MASP2) and ficolin 1 (FCN1) transcripts were detected at higher levels (≥ 2-fold) in at least 50% (4 of 8) of CFS subjects and were detected in 88% (7 of 8) CFS subjects when subjects with overexpression of either C4 or MASP2 were combined. Only an increase in the MASP2 transcript was statistically significant (PPIB, P = 0.001; GM, P = 0.047; rbcL, P = 0.045). This result may be due to the significant but transient downregulation of MASP2 in control subjects (PPIB, P = 0.023; rbcL, P = 0.027). By 6 hours postexercise, MASP2 expression was similar in both groups.

In conclusion, lectin pathway responded to exercise differentially in CFS than in control subjects. MASP2down-regulation may act as an antiinflammatory acute-phase response in healthy subjects, whereas its elevated level may account for increased C4a and inflammation-mediated postexertional malaise in CFS subjects.
 
Showing failure to appropriately decrease MASP-2 levels as occurred in HCs post exercise. The HCs dropped at 1 hour and had returned to normal levels by 6 hours while ME maintained levels post exercise.

Further analysis by t tests identified significant differences in the levels of MASP2 mRNA between CFS and control subjects at 1 hour postexercise. This difference in MASP2 mRNA appears to be due to a significant but transient downregulation in control subjects. By 6 hours postexercise, MASP2 expression was almost similar in both groups. In spite of the small sample size used in this study, this significant change in MASP2 expression at 1 hour postexercise was identified independently of the method used for normalization, indicating that the observed role of the MASP2-mediated lectin pathway in response to exercise is likely to be reproducible.

MASP.png



Which is reminiscent of the "flat" findings in the Hanson urine metabolomics study.

Our most unanticipated discovery is the lack of changes in the urine metabolome of ME/CFS patients during recovery while significant changes are induced in controls after CPET, potentially demonstrating the lack of adaptation to a severe stress
 
Back
Top Bottom