Dissecting the genetic complexity of myalgic encephalomyelitis/chronic fatigue syndrome via deep learning-powered genome analysis
Sai Zhang; Fereshteh Jahanbani; Varuna Chander; Martin Kjellberg; Menghui Liu; Katherine Glass; David Iu; Faraz Ahmed; Han Li; Rajan Douglas Maynard; Tristan Chou; Johnathan Cooper-Knock; Martin Jinye Zhang; Durga Thota; Michael Zeineh; Jennifer Grenier; Andrew Grimson; Maureen Hanson; Michael Snyder
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogeneous, and systemic disease defined by a suite of symptoms, including unexplained persistent fatigue, post-exertional malaise (PEM), cognitive impairment, myalgia, orthostatic intolerance, and unrefreshing sleep. The disease mechanism of ME/CFS is unknown, with no effective curative treatments.
In this study, we present a multi-site ME/CFS whole-genome analysis, which is powered by a novel deep learning framework, HEAL2. We show that HEAL2 not only has predictive value for ME/CFS based on personal rare variants, but also links genetic risk to various ME/CFS-associated symptoms. Model interpretation of HEAL2 identifies 115 ME/CFS-risk genes that exhibit significant intolerance to loss-of-function (LoF) mutations.
Transcriptome and network analyses highlight the functional importance of these genes across a wide range of tissues and cell types, including the central nervous system (CNS) and immune cells. Patient-derived multi-omics data implicate reduced expression of ME/CFS risk genes within ME/CFS patients, including in the plasma proteome, and the transcriptomes of B and T cells, especially cytotoxic CD4 T cells, supporting their disease relevance. Pan-phenotype analysis of ME/CFS genes further reveals the genetic correlation between ME/CFS and other complex diseases and traits, including depression and long COVID-19.
Overall, HEAL2 provides a candidate genetic-based diagnostic tool for ME/CFS, and our findings contribute to a comprehensive understanding of the genetic, molecular, and cellular basis of ME/CFS, yielding novel insights into therapeutic targets. Our deep learning model also offers a potent, broadly applicable framework for parallel rare variant analysis and genetic prediction for other complex diseases and traits.
Link | PDF (Preprint: MedRxiv) [Open Access]
Sai Zhang; Fereshteh Jahanbani; Varuna Chander; Martin Kjellberg; Menghui Liu; Katherine Glass; David Iu; Faraz Ahmed; Han Li; Rajan Douglas Maynard; Tristan Chou; Johnathan Cooper-Knock; Martin Jinye Zhang; Durga Thota; Michael Zeineh; Jennifer Grenier; Andrew Grimson; Maureen Hanson; Michael Snyder
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogeneous, and systemic disease defined by a suite of symptoms, including unexplained persistent fatigue, post-exertional malaise (PEM), cognitive impairment, myalgia, orthostatic intolerance, and unrefreshing sleep. The disease mechanism of ME/CFS is unknown, with no effective curative treatments.
In this study, we present a multi-site ME/CFS whole-genome analysis, which is powered by a novel deep learning framework, HEAL2. We show that HEAL2 not only has predictive value for ME/CFS based on personal rare variants, but also links genetic risk to various ME/CFS-associated symptoms. Model interpretation of HEAL2 identifies 115 ME/CFS-risk genes that exhibit significant intolerance to loss-of-function (LoF) mutations.
Transcriptome and network analyses highlight the functional importance of these genes across a wide range of tissues and cell types, including the central nervous system (CNS) and immune cells. Patient-derived multi-omics data implicate reduced expression of ME/CFS risk genes within ME/CFS patients, including in the plasma proteome, and the transcriptomes of B and T cells, especially cytotoxic CD4 T cells, supporting their disease relevance. Pan-phenotype analysis of ME/CFS genes further reveals the genetic correlation between ME/CFS and other complex diseases and traits, including depression and long COVID-19.
Overall, HEAL2 provides a candidate genetic-based diagnostic tool for ME/CFS, and our findings contribute to a comprehensive understanding of the genetic, molecular, and cellular basis of ME/CFS, yielding novel insights into therapeutic targets. Our deep learning model also offers a potent, broadly applicable framework for parallel rare variant analysis and genetic prediction for other complex diseases and traits.
Link | PDF (Preprint: MedRxiv) [Open Access]